
Theoret. ehim. Acta (Berl.) 5, 373--375 (1966) 

The Significance of the Strong 0rthogonality Condition for 
Geminal Functions in Variational Calculations 

C. S. LI~ and F. W. BIRSS 

Departmen~ of Chemistry, University of Alberta, Edmonton, Albert~, Canada 

Received April 22, 1966 

The use of an approximate wave function, for electronic systems, composed of 
an antisymmetrised product of two electron functions (geminals) has the advan- 
tage of maintaining something like the orbital concept while Mlowing correction 
of the energy and wave function for the correlation effects between electrons 
occupying similar regions of space [1]. Two forms have shown the greatest porch- 
tiM: the eon/iguration interaction geminals with the expansion 

ad i ,  2) = ~ Ok~ ~(k)(I) ~0~(~)(2) (i a) 
k 

where the ~ are suitable one-electron basis functions, and the explicitly correlated 
geminals with the expansion 

Gi(i, 2) = ~ Cki 9a(~)(t) 9b(k)(2) Zk(l, 2) ( lb)  

where the F are as before and Z~ is a function of r12, the interelectronic distance. 
I f  the variational problem based upon an energy expression arising from the 

use of an antisymmetrised product is to be tractible, it appears necessary to apply 
restrictions to the geminal functions [5]. By analogy to orbital functions one can 
apply complete geminal orthonormality 

<a~(l, 2) I aj(l ,  2)> = ~ j ,  (2) 

the bra-ket notation indicating integration over all available electronic coordinates" 
A further restriction is the strong orthogonality condition 

f G ~ ( i ,  2) Gj(l, 3) d~  = 0, i # ] (3) 

which also leads to the complete orthogonality condition of Eq. (2). 
The purpose of this note is to examine the form of the variational problem to 

clarify the question as to the origin and necessity of the use of the strong ortho- 
gonality constraint. For simplicity, the example of the four-electron case with 
approximate total wave function 

q5 = ~/[Gl( i ,  2) G2(3, 4)] (4) 

with ~g the antisymmetrising operator, will be treated. 

Applying the complete orthonormality restriction of Eq. (2) only, one has 

@b ]qS} = I -- 2 (G~(l, 2) G2(3,4 ) I G~(3, 2) G~(I, 4)>. (5) 
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The presence of the integral in this expression is unfortunate from the point of 
view of a manageable formalism. When one attempts to vary the energy expression 

E = <~ I .g~ I ~5}/@b l~b } (6) 

with the denominator given by Eq. (5), and under constraint Eq. (2), a quite 
formidable expression results. Therefore one finds it practically necessary to reduce 
the complexity of Eq. (6) by imposing a constraint such that ( 4  I+} = t, i.e. 

<G~(I, 2) G:(3, 4) I G~(3, 2) G:(t, 4)} = 0.  (7) 

This constraint is, however, equivalent to the strong orthogonality condition. 
I f  we define a function 

Fij(m, n) = f G~(k, m) Gj(k, n) dye, (8) 

the integral of Eq. (7) becomes 

f f ! F1~(2, 4) I2dv2dTd =- O. (9) 

Due to the nature of the integrand, Eq. (9) is only satisfied by 

F1~(2, 4) = / ~(1,  2) G~(I, 4) d~  = 0 (10) 

which defines strong orthogonality. We therefore regard strong orthogonality 
simply as the condition necessary for the simplification of the formalism arising 
from the use of the geminal product form in the variational problem starting with 
nq. (6). 

I t  is tempting to write the energy expression, taking into account strong 
orthogonality, and to impose the normafisation constraint by Eq. (2), and the 
strong orthogonality constraint by Eq. (7), or by the alternant form 

(GI(I, 2) G~(3, 4) 1 ~ 3  I GI(t, 2) G~(3, 4)} = 0 (11) 

where ~la is the permutation operator, operating upon electrons i and 3. The 
operator equations derived from the variation of the energy expression, with 
constraints, are 

~-1 G1 = 011 G1 + 012 g~ G2 (t2) 
~-2 G2 = 0~ G+: + 0~:1 +/G1 

where 011, 022 are Lagrangian multip]iers used in conjunction with the normalisa- 
tion constrainCs, 012, 021 are multipliers used with Eq. (ii), and ~/is  an integral 
operator such that 

<G~(t, 2) I ~+ I G~( 1, 2)} = <G~(l, 2) I ~ [ r 2)} 
= <G~(I, 2) Ge(3 , 4) I ~ 3  I G~(I, 2) G2(3, 4)}. (i3) 

In attempting a further reduction of Eqs. (12) one tries to express the Lagrangian 
multipliers as integrals involving the operators and geminal functions. Indeed one 
has 

022 = (G~(I, 2) 1~2  I e2(l, 2)} ,  
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but unfortunately 

~G2(~ , 2) I ~ 1  1GI(~, 2)) = 012.~G2(~ , 2) [ ~ [G2(l , 2)) 
= 0~ (Ge(1, 2) G2(3, 4) ] ~a I G~( i, 2) G~(3, 4)) = 0. 

The attemp~ has foundered upon the presence in the expression of Eq. (il) of two 
statements of strong orthogonality, thus rendering 01z undeterminable. 

There remains the method commonly used to ensure strong orthogona]ity : the 
choice of two mutually exclusive and orthogonal basis sets for the two distinct 
geminals [2, 4, 5]. Such a choice removes the necessity for employing strong 
orthogonality as an explicit constraint in a manner analogous to the neglect of 
orthogonality constraints between orbitals of different symmetry. Such a choice 
is only feasible for the 'configuration interaction' geminals. No general mutually 
orthogonal sets exist for the 'explicitly correlated' geminals [6]. Consequently, 
first order corrections for the terms violating the strong orthogonality conditions 
must be sought, such as Kapuy's 'almost strongly orthogonal' geminals [3]. An 
investigation of this approximation, but in the context of 'configuration inter. 
action' geminals is under way in this laboratory. 
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